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1
GLOBAL AND LOCAL LIGHT DETECTION
IN OPTICAL SENSOR SYSTEMS

BACKGROUND

Computing devices may be configured to include touch
functionality to detect proximity of an object to initiate one
or more actions. For example, touch functionality may be
utilized to detect proximity of a finger of a user’s hand or
other object to a display device as part of recognition of a
gesture to initiate one or more functions of the computing
device.

A variety of different types of sensors may be utilized to
detect this proximity, one example of which includes use of
optical sensors. The effectiveness of optical sensors are often
sensitive to the environmental lighting conditions under
which they operate. Accordingly, conventional use of the
optical sensors in such environments could fail, thereby
diminishing a user’s experience and usefulness of the com-
puting device as a whole, especially in situations in which
the touch functionality is configured as a primary input
technique for use with the computing device.

SUMMARY

Global and local light detection techniques in optical
sensor systems are described. In one or more implementa-
tions, a global lighting value is generated that describes a
global lighting level for a plurality of optical sensors based
on a plurality of inputs received from the plurality of optical
sensors. An illumination map is generated that describes
local lighting conditions of respective ones of the plurality
of optical sensors based on the plurality of inputs received
from the plurality of optical sensors. Object detection is
performed using an image captured using the plurality of
optical sensors along with the global lighting value and the
illumination map.

In one or more implementations, a system includes a
plurality of optical sensors and modules implemented at
least partially in hardware. The modules are configured to
implement a global lighting module, a local lighting module,
and an object detection module. The global lighting module
is configured to generate a global lighting value that
describes a global lighting level for the plurality of optical
sensors based on a plurality of inputs received from the
plurality of optical sensors. The local lighting module is
configured to generate an illumination map that describes
local lighting conditions of respective ones of the plurality
of optical sensors based on the plurality of inputs received
from the plurality of optical sensors. The object detection
module configured to perform object detection using an
image captured using the plurality of optical sensors along
with the global lighting value and the illumination map.

In one or more implementations, a plurality of pre-trained
class histograms are trained that are usable to detect a global
lighting value through comparison with a histogram gener-
ated from inputs received from a plurality of optical sensors
of'an optical sensor system. The training includes generating
a plurality of histograms, each representing intensity of
pixels in respective one of the plurality of training images.
The training also includes classifying training images into a
respective one of a plurality of classes through comparison
of the histograms generated from respective ones of the
plurality of training images with histograms generated from
seed images that are representative of the classes, each of the
classes representative of a respective global lighting value.
The training further includes updating the histograms that
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are representative of the classes based on the classifying to
form the plurality of pre-trained class histograms.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description is described with reference to the
accompanying figures. In the figures, the left-most digit(s) of
a reference number identifies the figure in which the refer-
ence number first appears. The use of the same reference
numbers in different instances in the description and the
figures may indicate similar or identical items.

FIG. 1 is an illustration of an environment in an example
implementation that is operable to employ object detection
techniques for use in optical sensor systems.

FIG. 2 illustrates an example showing images captured
using the optical sensors of FIG. 1.

FIG. 3 illustrates an example showing images captured
using the optical sensors of FIG. 1 and processed using a
local extrema based approach.

FIG. 4 depicts a system in an example implementation
showing the global lighting module 118 of FIG. 1 in greater
detail as performing a training phase.

FIG. 5 depicts an example of images that representing a
class and the corresponding histograms.

FIG. 6 depicts an example system in which pre-trained
class histograms generated by the system of FIG. 4 are
utilized to calculate a global lighting value for an image.

FIG. 7 depicts an example system showing a local lighting
module of FIG. 1 in greater detail as configured to generate
a local lighting conditions estimation.

FIG. 8 depicts an example implementation showing an
example of object detection involving touch down events of
fingers of a user’s hand.

FIG. 9 depicts an example of detection of a touch down
event initiated by an object that is followed by a touch up
event in relatively low ambient lighting conditions.

FIG. 10 depicts an example of detection of a touch down
event initiated by an object that is followed by a touch up
event in relatively high ambient lighting conditions.

FIG. 11 is a flow diagram depicting a procedure in an
example implementation in which global and local light
values are utilized as part of object detection by an optical
sensor system.

FIG. 12 is a flow diagram depicting a procedure in an
example implementation in which pre-trained class histo-
grams are trained.

FIG. 13 illustrates various components of an example
device that can be implemented as any type of portable
and/or computer device as described with reference to FIGS.
1-12 to implement embodiments of the object detection
techniques described herein.

DETAILED DESCRIPTION

Overview

Accuracy in the conventional use of optical sensors for
object detection is often sensitive to lighting conditions of an
environment in which the optical sensors are placed. For
example, ambient lighting conditions may have an effect on
a device’s ability distinguish an object (e.g., a fingertip of a
user’s hand) from the device’s surroundings.
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Global and local light detection techniques for optical
sensor systems are described. Optical sensors may be con-
figured in a variety of ways to detect proximity of an object,
such as incorporated in a sensor-in-pixel design as part of a
display device. Images collected from the sensors may then
be processed to detect whether an object is proximal to
respective ones of the sensors. A variety of different tech-
niques may be employed to perform this processing. As
previously described, however, an amount of ambient light
may have an adverse effect on detection objects.

Accordingly, techniques are described that may be uti-
lized to detect an amount of light both globally and locally
of an optical sensor system. The optical sensor system, for
instance, may be configured to detect global lighting con-
ditions that apply to the optical sensor system, generally, as
a whole. The optical sensor system may also be configured
to detect local lighting conditions that are spatially localized
for portions of the optical sensor system. The techniques
may be applied in parallel and used to determine light effects
at a per pixel level. Further discussion of these and other
techniques may be found in relation to the following sec-
tions.

In the following discussion, an example environment is
first described that is operable to employ the global and local
light detection techniques described herein. Example illus-
trations of the techniques and procedures are then described,
which may be employed in the example environment as well
as in other environments. Accordingly, the example envi-
ronment is not limited to performing the example techniques
and procedures. Likewise, the example techniques and pro-
cedures are not limited to implementation in the example
environment.

Example Environment

FIG. 1 is an illustration of an environment 100 in an
example implementation that is operable to employ object
detection techniques for use in optical sensor systems. The
illustrated environment 100 includes an example of a com-
puting device 102 that may be configured in a variety of
ways. For example, the computing device 102 may be
configured as a traditional computer (e.g., a desktop per-
sonal computer, and so on), a mobile communications
device (e.g., a tablet as illustrated, a mobile phone, portable
game device, portable music device, or other mobile con-
figuration configured to be held by one or more hands of a
user), an entertainment appliance, a set-top box communi-
catively coupled to a television, a wireless phone, a netbook,
a game console, and so forth as further described in relation
to FIG. 13. Thus, the computing device 102 may range from
full resource devices with substantial memory and processor
resources (e.g., personal computers, game consoles) to a
low-resource device with limited memory and/or processing
resources (e.g., traditional set-top boxes, hand-held game
consoles). The computing device 102 may also relate to
software that causes the computing device 102 to perform
one or more operations as well as refer to a combination of
devices, e.g., a gesture capture device and game console,
set-top box and remote control, and so on.

The computing device 102 is illustrated as including an
input/output module 104. The input/output module 104 is
representative of functionality relating to inputs of the
computing device 102. For example, the input/output mod-
ule 104 may be configured to receive inputs from a key-
board, mouse, to identify gestures and cause operations to be
performed that correspond to the gestures, and so on. The
inputs may be identified by the input/output module 104 in
a variety of different ways.
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For example, the input/output module 104 may be con-
figured to recognize an input received via touchscreen
functionality of a display device 106 to detect an object as
proximal to the display device 106, such as a finger of a
user’s hand 108 as proximal to the display device 106 of the
computing device 102, from a stylus, and so on. The input
may take a variety of different forms, such as to recognize
movement of a finger of the user’s hand 108 across the
display device 106, such as a tap, drawing of a line, and so
on.

In implementations, these inputs may be recognized as
gestures by a gesture module 110. A variety of different
types of gestures may be recognized by the gesture module
110, such as gestures that are recognized from a single type
of input (e.g., touch gestures) as well as gestures involving
multiple types of inputs. For example, the computing device
102 may be configured to detect and differentiate between
inputs based on which object is utilized to perform the
gesture, e.g., a stylus or finger as described above. Addi-
tionally, although a touch input is described the recognition
of the object as proximal to the display device 106 may be
made without contacts the display device 106, e.g., as a
“hover.”

Additionally, although the following discussion may
describe specific examples of inputs, in instances the types
of inputs may be switched (e.g., touch may be used to
replace stylus, a hover may be used in place of physical
contact, and so forth) without departing from the spirit and
scope thereof. Further, although in instances in the following
discussion the gestures are illustrated as being input using
touchscreen functionality, the gestures may be input using a
variety of different techniques by a variety of different
devices to detect proximity of an object.

One such example that may be utilized to detect proximity
of'an object is displayed as an optical sensor system 112. The
optical sensor system 112 includes a sensor processing
module 114 that is representative of functionality to make a
determination for each of the optical sensors 116 as to
whether an object is disposed proximal to the sensors.

The optical sensors 116, for instance, may be configured
as part of the display device 106 as an array of sensors
embedded with corresponding pixels to detect proximity of
objects as a sensor-in-pixel (SIP) panel. For example, the
optical sensors 116 may be configured as infrared sensors
configured to detect infrared (IR) light to support an optical
mode of interaction with the computing device 102. The
optical sensors 116 in this IR configuration are embedded in
the display device 106 to capture IR images of the surround-
ings of the display device 106 and even the computing
device 102 as a whole, especially when objects are in contact
with the display device, e.g., a user touches the screen.

Object detection by the optical sensors 116 and subse-
quent processing by the sensor processing module 114
allows the optical sensor system 112 to map object position
and motion into actions that may be recognized as gestures
by the gesture module 110 and/or support other interaction,
such as object identification and so on. For example,
machine learning techniques may be utilized to identify
fingers from non-fingers, identify which finger of a user’s
hand is in use, and so on. A variety of different machine
learning techniques may be employed, such as to leverage a
histogram to classify touches although other examples are
also contemplated without departing from the spirit and
scope thereof.

Conventional touch detection approaches assume that the
infrared (IR) light is reflected back by fingers and forms a
relatively bright spot in the SIP image captured by the
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sensors, with the background (non-finger region) being
relatively dark. Therefore, these conventional approaches
are based on local extrema in an intensity landscape cap-
tured by the sensors. In practice, however, the IR image may
be dependent on the ambient lighting condition in the
environment, such as directional lighting (light emanating
from an overhead lighting fixture, spotlight or floodlight) or
diffuse lighting such as light diffusely reflecting off a painted
ceiling or emanating from clouds through large area of
windows, and so on. As shown in the example 200 of FIG.
2, the background can be bright and there may be shadows
cast by the hand.

There are different types of images that may be directly
read from the optical sensors 116. For example, a first type
may involve an image with both IR light and ambient light.
A second type is an image that includes solely ambient light.
These two types of images are denoted using “Field_0" and
“Field_17, respectively, in the following.

In theory, subtraction of Field_1 from Field_0 may be
performed to generate an IR component, which may be
denoted as Field_IR in the rest of this discussion. This
Field_IR image is, in theory, expected to be invariant to
ambient lighting conditions. However, there are practical
issues with this ambient cancelation technique. First of all,
Field_0 and Field_1 are not taken at the same time. There-
fore when an object moves, pixels near object boundaries
could be bright in Field_IR which makes traditional local
extrema based approach fail as shown in the example 300
shown in FIG. 3.

Second, the measured Field_0 and Field_1 images may be
noisy both spatially and temporally. Such noises are content
dependent and hence may be difficult to remove by conven-
tional filtering methods. Further, pixel intensity values are
not linear with respect to the sensor integration time and
therefore ambient cancelation is not straightforward.
Accordingly, motion artifacts, sensor noise, and optical
sensor’s nonlinear response make blob detection on
Field_IR unreliable and lead to poor detection accuracy
which is also shown in the example 300 of FIG. 3.

In the illustrated example, the sensor processing module
114 is illustrated as including a global lighting module 118,
a local lighting module 120 and an object detection module
122. The global and local lighting modules 118, 120 may be
utilized in parallel to estimate the amount of light in the
environment at a global and local level (e.g., spatially-
localized lighting), respectively.

The global lighting module 118, for instance, is represen-
tative of functionality to determine a global lighting level for
an environment, in which, the optical sensor system 112 has
been placed. For example, the global lighting module 118
may be configured to arrive at a global lighting value that
generalizes an amount of light detected by the optical sensor
system 112, generally, as a whole. The global lighting value,
for instance, may be configured as a single value that gives
a measure of a light level across the optical sensors 116 and
thus whether the optical sensor system 112 is likely disposed
in a dark, bright, or a mid-range lighted environment. In this
example, the global lighting value calculated by the global
lighting module 118 may be calculated without use of
dedicated hardware (e.g., a light sensor) although other
examples are also contemplated, such as to leverage use of
a camera of the computing device 102.

The local lighting module 120 is representative of func-
tionality to determine lighting conditions of portions that are
a subset of an entirety of the optical sensors 116 of the
optical sensor system 112, i.e., local lighting conditions. For
example, the local lighting module 120 may be configured
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to detect different amounts of ambient and other light that
are detectable by the optical sensors 116, such as a first
subset of the optical sensors 116 begin exposed to light from
a lamp while another subset is shaded by a hand 108 of a
user.

By estimating the amount of light at a fine level (e.g., at
a per-pixel level in a SIP implementation) similar techniques
may be implemented with different parameters in different
regions of an image captured by the optical sensors 116 to
perform object detection by the object detection module
122. For example, the values calculated by the local lighting
module 120 for different regions of the optical sensors 116
in the display device 106 may be used to “correct” the
ambient lighting conditions for object detection and subse-
quent gesture recognition by the gesture module 110 at these
regions.

In the following discussion, global lighting condition
estimation techniques are first described, which include
training of histograms and subsequent use of the histograms
to perform global light detection. Local lighting condition
estimation techniques are then described, which may be
performed in parallel with the global lighting techniques and
which may be used to support a variety of functionality, such
as object detection and gesture recognition.

Global Light Detection Training Phase

FIG. 4 depicts a system 400 in an example implementa-
tion showing the global lighting module 118 of FIG. 1 in
greater detail as performing a training phase. First, seed
training images 402 are divided into “K” classes by a
labeling module 404 to obtain seed classified images 406,
where “K” is a user-specified parameter based on ambient
light intensity. For example, users may interact with a user
interface output by the seed labeling module 404 to manu-
ally select seed training images 402 for each class. In
another example, a known lighting condition may be used,
e.g., information recording during image capture by the
optical sensor system 112 such as a number of light sources
in a room, to automatically generate the seed classified
images 406 automatically and without user intervention by
the labeling module 404 to obtain the seed classified images
406.

A histogram computation module 410 may then be uti-
lized to compute seed histograms 412 for each of the seed
classified images 406 obtained from the seed labeling mod-
ule 404 above. Thus, each of the seed histograms 412
computed for the seed classified images 406 may be repre-
sentative of a corresponding one of a plurality of classes that
were specified above.

The global lighting module 118 may then utilize classi-
fication techniques (e.g., a K-mean based clustering tech-
nique) to cluster training images 414 into respective ones of
the plurality of classes. For example, the histogram compu-
tation module 410 may also be utilized to compute training
histograms 416 for each of the training images 414.

A histogram similarity module 418 may then be utilized
to assign each of the training images 414 to a respective one
of the plurality of classes, e.g., a respective class ID, based
on the respective training histograms 416. For example, the
histogram similarity module 418 may employ a K-mean
based classification technique to divide the training images
414 to respective classes by the training histograms. Thus,
for each seed training image 402 (Field_0), the seed histo-
gram 412 describing relative intensity of pixel values is
computed. Then for each training image 414 a training
histogram is computed and compared to one or more of the
seed histograms 412. A nearest neighbor seed image’s class
ID is then assigned to that training image 414.
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After a class ID has been assigned to each of the training
images 414, the class histogram may be recomputed and
updated using one or more of the training images 414 that
belong to that particular class. This process may be repeated
for several iterations until the data partition becomes stable,
i.e., the per-class intensity histogram does not exhibit a
significant change compared to a version from a previous
iteration, to generate pre-trained class histograms 420. FIG.
5 depicts an example 500 of images that representing a class
and the corresponding histograms. In the illustrated example
500, the value “K” is set equal to five.

Returning again to FIG. 4, the histogram computation
module 410 may be configured to give preference to pixels
that are lit by ambient light, alone. Accordingly, in such a
configuration the histogram computation module 410 does
not utilize each of the pixels in an image to compute a
histogram, such as pixels that are involved in touches,
shadowed, lit by reflected infrared light emitted by the
computing device 102, and so on. This may be performed in
a variety of ways.

For example, a box filter (e.g., 35x35) may be applied as
a low pass filter to the Field 0 image and the filtered
result stored as “Field_0'.” Local gradients may be com-
puted as “Field_0_LP=abs(Field_0-Field_0").” If “Field_0_
LP(x,y)>T1” then “(x,y)” is a high frequency pixel (e.g.,
touch or shadow) and is rejected. For pixels that pass the low
pass filter, a corresponding value in the “Field_IR” image is
checked. The value “(x,y)” is used to compute a histogram
if and only if “Field_IR(x,y)<T2.” For example, this check
may be applied because a large value in “Field_IR” may
indicate that the pixel could involve a touch or other object
on the display. In one or more implementations, values for
“T1” and “T2” are 2 and 3, respectively.

The histogram similarity module 418 may employ a
variety of techniques to measure a similarity between two
histograms, e.g., the training and seed histograms 412, 416.
For example, the distance between two histograms may be
defined as the distance between a maximum bin index, e.g.,
the index of bin [0,255] whose corresponding histogram
value is the largest. A smaller distance indicates that the two
histograms are more similar than two histograms having a
larger distance in this example.

Global Light Detection Estimation

FIG. 6 depicts an example system 600 in which pre-
trained class histograms 420 generated by the system 400 of
FIG. 4 are utilized to calculate a global lighting value for an
image. In this example, an image 602 is classified by the
global lighting module 118.

The histogram computation module 410, for instance,
may be configured to compute an image histogram 604 of an
image captured by the optical sensor system 112 of FIG. 1,
e.g., a Field 0 image. The image histogram 604 is then
compared to the pre-trained class histograms 420 by the
histogram similarity module 418 to find a class (e.g., a class
ID) that corresponds to the image histogram 604.

The image 602 is then assigned a global lighting value
606 (c.g., an ambient level value) which is the class ID of its
nearest neighbor histogram from the pre-trained class his-
tograms 420. The returned global lighting value 606 may
then be used to make an adaptive decision, for example to
choose the optimum parameters under certain lighting con-
ditions by the object detection module 122, sensor process-
ing module 114, gesture module 110, and so forth.

Local Light Detection Estimation

FIG. 7 depicts an example system 700 showing the local
lighting module 120 of FIG. 1 in greater detail as configured
to generate a local lighting conditions estimation. The local
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lighting module 120 is configured to receive an input image
704 and generates another image configured as an illumi-
nation map 704, e.g., where each pixel has a value between
“0-255.” A value of “0”, for instance, indicates that an
optical sensor 116 of FIG. 1 corresponding to that pixel
location has an extremely dark ambient illumination condi-
tion, e.g., it could be in a shadow region or occluded by an
object. On the other hand, a value of “255” indicates an
extremely strong light, e.g., an overhead lamp at full bright-
ness in the location that corresponds to the respective optical
Sensor.

These values may then be used to tune algorithmic
parameters at a per-pixel level for object detection by the
object detection module 112, e.g., so that false touches may
be eliminated and suppressed touches end up stronger in the
final touch detection stage. The following describes an
example of a technique for generating a local illumination
value at a pixel that is usable to generate the illumination
map 704.

The local lighting module 120 is illustrated as including
a binary illumination map module 706. This module, for
instance, may accept as an input an image 702 (e.g., a
Field_IR image) as described in the preceding section. For
each pixel in the image 702, the binary illumination map
module 706 selects a portion of neighboring pixels and
collects intensity values for those pixels. Thus, portions of
values obtained from neighboring ones of a subset of the
optical sensors 116 of FIG. 1 may be selected and intensity
values collected for the optical sensors 116.

For instance, a Bresenham circle (e.g., of radius 4.5) may
be used to select intensity values of neighboring pixels in
that circle. For efficiency on a parallel GPU implementation
of the computing device 102, the pixel offsets with respect
to the center pixel for identifying neighbors falling on the
Bresenham circle may be stored in a look-up table that is
loaded just once. The Bresenham circle in this case includes
96 neighboring pixels although other examples are also
contemplated.

The binary illumination map module 706 then measures
an arc-length on the Bresenham circle, such that each of the
pixels on the arc are brighter than a center pixel by at-least
a predefined number of gray values, e.g., ten. Also, the
binary illumination map module 706 also records the inten-
sity value of the center pixel and the variance of pixel
intensities in a predefined portion (e.g., a 9x9 square block)
about the center pixel. This step may be performed concur-
rently while measuring the arc length by the binary illumi-
nation map module 706.

The recordation of the intensity values as described above
may be used to generate hard constraints for a local illumi-
nation map. If there are at least 10 pixels continuously
brighter than the center pixel (as computed by measuring the
arc-length), then the center pixel is given a value of 255. The
logic here is that in the event of a touch down, the local
intensity distribution about the center pixel is to have at least
a predefined smoothness, irrespective of lighting, and thus
does not generate such a well oriented intensity gradient.
This arc may be caused by shadows (see FIGS. 8-10) when
an object (e.g., a finger) is hovering on top of a SIP panel or
other configuration of an optical sensor system 112.

The hard constraints may therefore be leveraged as a
check before assigning the pixel a value of “0,” i.e., this
pixel is under a touch down event caused by an object, if it
fails the arc test. If the center pixel is not brighter than an
intensity value of “128” (which is half the max possible gray
level and assuming that a touchdown cannot be brighter than
this under any lighting condition) and the block of 9x9 pixel
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intensities around yields a variance of “25,” i.e., the neigh-
borhood is smooth and dark, then this pixel is assigned a
value of “0.”

The binary illumination map 708 is then processed by a
blur module 710. The blur module 710, for instance, may
apply a blur kernel (e.g., 9x9) to yield the final illumination
map 704. The illumination map 704 output by the local
lighting module 120, along with the global lighting value
606 output by the global lighting module 118 may then be
utilized to perform object detection along with images
captured by the optical sensors 116 of the optical sensor
system 112. For a sensor-in-pixel configuration, for instance,
the object detection module 122 may determine a likelihood
for each pixel in an image captured by the optical sensors
116 that an object has been detected by that pixel. This may
be utilized to support a variety of functionality as previously
described, such as to support use of gestures recognized by
the gesture module 110 of FIG. 1.

FIG. 8 depicts an example implementation 800 showing
an example of object detection involving touch down events
of fingers of a user’s hand 108. In the top row, input images
(Field_0) of touch-down events on a SIP panel under low
light are shown. The bottom row illustrates examples of
corresponding output local illumination maps, where dark
pixels are detected touch downs, and bright regions are
“ambient”.

The illustrated horizontal lines are due to artifacts in the
panel which is also seen in the input images and thus are
ignored by the module. As shown, the images illustrate that
under low light conditions, the sensor processing module
114 allows “correct” touches to go through and therefore
does not introduce false negatives.

FIG. 9 depicts an example 900 of detection of a touch
down event initiated by an object that is followed by a touch
up event in relatively low lighting conditions. The object in
this example is a finger of a user’s hand. In the illumination
map in column (A), fingertip pixels are dark during the touch
down event. On a touch up in column (B), the pixels changes
to bright under the fingertip in the illumination map. The
dark edges of the contour of the hand itself may be rejected
by the object detection module 112 and thus do not interfere
with the object detection.

FIG. 10 depicts an example 1000 of detection of a touch
down event initiated by an object that is followed by a touch
up event in relatively high ambient lighting conditions. The
object in this example is also a finger of a user’s hand. In the
illumination map in column (A), fingertip pixels are dark
during the touch down event as in the previous example
shown in FIG. 9. Also, on a touch up in column (B), the
pixels changes to bright under the fingertip in the illumina-
tion map. Thus, even in bright ambient lighting conditions
the object detection module 112 may detect object which
may be utilized to support gestures and other functionality.

Example Procedures

The following discussion describes global and local light
detection and object detection techniques that may be imple-
mented utilizing the previously described systems and
devices. Aspects of each of the procedures may be imple-
mented in hardware, firmware, software, or a combination
thereof. The procedures are shown as a set of blocks that
specify operations performed by one or more devices and
are not necessarily limited to the orders shown for perform-
ing the operations by the respective blocks. In portions of the
following discussion, reference will be made to FIGS. 1-10.

FIG. 11 depicts a procedure 1100 in an example imple-
mentation in which global and local light values are utilized
as part of object detection by an optical sensor system. A
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global lighting value is generated that describes a global
lighting level for a plurality of optical sensors based on a
plurality of inputs received from the plurality of optical
sensors (block 1102). A global lighting module 118, for
instance, may generate a histogram from an image captured
by optical sensors 116 of an optical sensor system 112. This
histogram may be compared with pre-trained class histo-
grams 420 to locate a class and corresponding class ID. The
class ID may be utilized as the global lighting value for that
image as shown and described in relation to FIG. 6.

An illumination map is also generated that describes local
lighting conditions of respective ones of the plurality of
optical sensors based on the plurality of inputs received from
the plurality of optical sensors (block 1104). The local
lighting module 120, for instance, may utilize a binary
illumination map module 706 and a blur module 710 to
generate an illumination map that describes illumination at
a localized subset of the optical sensors 112, e.g., in a
sensor-in-pixel or other configuration.

Object detection is performed using the image captured
using the plurality of optical sensors along with the global
lighting value and the illumination map (block 1106). Con-
tinuing with the previous example, the object detection
module 122 may utilize an image, which may be the same
as or different from the images utilized to generate the global
lighting value and the illumination map, along with the
global lighting value and illumination map to answer a
per-sensor question of “does this optical sensor detect an
object?” This may be utilized to support a variety of func-
tionality such as gestures, object identification, facial rec-
ognition, and so on.

FIG. 12 depicts a procedure 1200 in an example imple-
mentation in which pre-trained class histograms are trained.
A plurality of pre-trained class histograms are trained that
are usable to detect a global lighting value through com-
parison with a histogram generated from inputs received
from a plurality of optical sensors of an optical sensor
system. As described in relation to FIG. 54, the global
lighting module 118 may be utilized to train pre-trained class
histograms 420 that are usable to identify respective classes
as previously described in relation to FIG. 11.

The training includes generating a plurality of histograms,
each representing intensity of pixels in respective one of the
plurality of training images (block 1202). A histogram
computation module 410, for instance, may be utilized to
generate the training histograms.

The training also includes classifying training images into
respective one of a plurality of classes through comparison
of the histograms generated from respective ones of the
plurality of training images with histograms generated from
seed images that are representative of the classes, each of the
classes representative of a respective global lighting value
(block 1204). A histogram similarity module 418, for
instance, may compare the training histograms 416 with the
seed histograms 412 to determine which histograms, and
consequently which class, is most similar.

The training further includes updating the histograms that
are representative of the classes to form the plurality of
pre-trained class histograms (block 1206). As previously
described, this process may be iterative and thus classified
training histograms 416 may be utilized to update the
histogram that is representative of a respective class. A
variety of other examples are also contemplated without
departing from the spirit and scope thereof.

Example System and Device

FIG. 13 illustrates an example system generally at 1300
that includes an example computing device 1302 that is



US 9,430,095 B2

11

representative of one or more computing systems and/or
devices that may implement the various techniques
described herein. The computing device 1302 may be, for
example, a server of a service provider, a device associated
with a client (e.g., a client device), an on-chip system, and/or
any other suitable computing device or computing system.

The example computing device 1302 as illustrated
includes a processing system 1304, one or more computer-
readable media 1306, and one or more I/O interface 1308
that are communicatively coupled, one to another. Although
not shown, the computing device 1302 may further include
a system bus or other data and command transfer system that
couples the various components, one to another. A system
bus can include any one or combination of different bus
structures, such as a memory bus or memory controller, a
peripheral bus, a universal serial bus, and/or a processor or
local bus that utilizes any of a variety of bus architectures.
A variety of other examples are also contemplated, such as
control and data lines.

The processing system 1304 is representative of function-
ality to perform one or more operations using hardware.
Accordingly, the processing system 1304 is illustrated as
including hardware element 1310 that may be configured as
processors, functional blocks, and so forth. This may include
implementation in hardware as an application specific inte-
grated circuit or other logic device formed using one or more
semiconductors. The hardware elements 1310 are not lim-
ited by the materials from which they are formed or the
processing mechanisms employed therein. For example,
processors may be comprised of semiconductor(s) and/or
transistors (e.g., electronic integrated circuits (ICs)). In such
a context, processor-executable instructions may be elec-
tronically-executable instructions.

The computer-readable storage media 1306 is illustrated
as including memory/storage 1312. The memory/storage
1312 represents memory/storage capacity associated with
one or more computer-readable media. The memory/storage
component 1312 may include volatile media (such as ran-
dom access memory (RAM)) and/or nonvolatile media (such
as read only memory (ROM), Flash memory, optical disks,
magnetic disks, and so forth). The memory/storage compo-
nent 1312 may include fixed media (e.g., RAM, ROM,, a
fixed hard drive, and so on) as well as removable media
(e.g., Flash memory, a removable hard drive, an optical disc,
and so forth). The computer-readable media 1306 may be
configured in a variety of other ways as further described
below.

Input/output interface(s) 1308 are representative of func-
tionality to allow a user to enter commands and information
to computing device 1302, and also allow information to be
presented to the user and/or other components or devices
using various input/output devices. Examples of input
devices include a keyboard, a cursor control device (e.g., a
mouse), a microphone, a scanner, touch functionality (e.g.,
capacitive or other sensors that are configured to detect
physical touch), a camera (e.g., which may employ visible or
non-visible wavelengths such as infrared frequencies to
recognize movement as gestures that do not involve touch),
and so forth. Examples of output devices include a display
device (e.g., a monitor or projector), speakers, a printer, a
network card, tactile-response device, and so forth. Thus, the
computing device 1302 may be configured in a variety of
ways as further described below to support user interaction.

Various techniques may be described herein in the general
context of software, hardware elements, or program mod-
ules. Generally, such modules include routines, programs,
objects, elements, components, data structures, and so forth
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that perform particular tasks or implement particular abstract
data types. The terms “module,” “functionality,” and “com-
ponent” as used herein generally represent software, firm-
ware, hardware, or a combination thereof. The features of
the techniques described herein are platform-independent,
meaning that the techniques may be implemented on a
variety of commercial computing platforms having a variety
of processors.

An implementation of the described modules and tech-
niques may be stored on or transmitted across some form of
computer-readable media. The computer-readable media
may include a variety of media that may be accessed by the
computing device 1302. By way of example, and not limi-
tation, computer-readable media may include “computer-
readable storage media” and “computer-readable signal
media.”

“Computer-readable storage media” may refer to media
and/or devices that enable persistent and/or non-transitory
storage of information in contrast to mere signal transmis-
sion, carrier waves, or signals per se. Thus, computer-
readable storage media refers to non-signal bearing media.
The computer-readable storage media includes hardware
such as volatile and nonvolatile, removable and non-remov-
able media and/or storage devices implemented in a method
or technology suitable for storage of information such as
computer readable instructions, data structures, program
modules, logic elements/circuits, or other data. Examples of
computer-readable storage media may include, but are not
limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, hard disks, magnetic cas-
settes, magnetic tape, magnetic disk storage or other mag-
netic storage devices, or other storage device, tangible
media, or article of manufacture suitable to store the desired
information and which may be accessed by a computer.

“Computer-readable signal media” may refer to a signal-
bearing medium that is configured to transmit instructions to
the hardware of the computing device 1302, such as via a
network. Signal media typically may embody computer
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as carrier waves,
data signals, or other transport mechanism. Signal media
also include any information delivery media. The term
“modulated data signal” means a signal that has one or more
of its characteristics set or changed in such a manner as to
encode information in the signal. By way of example, and
not limitation, communication media include wired media
such as a wired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared, and other
wireless media.

As previously described, hardware elements 1310 and
computer-readable media 1306 are representative of mod-
ules, programmable device logic and/or fixed device logic
implemented in a hardware form that may be employed in
some embodiments to implement at least some aspects of the
techniques described herein, such as to perform one or more
instructions. Hardware may include components of an inte-
grated circuit or on-chip system, an application-specific
integrated circuit (ASIC), a field-programmable gate array
(FPGA), a complex programmable logic device (CPLD),
and other implementations in silicon or other hardware. In
this context, hardware may operate as a processing device
that performs program tasks defined by instructions and/or
logic embodied by the hardware as well as a hardware
utilized to store instructions for execution, e.g., the com-
puter-readable storage media described previously.
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Combinations of the foregoing may also be employed to
implement various techniques described herein. Accord-
ingly, software, hardware, or executable modules may be
implemented as one or more instructions and/or logic
embodied on some form of computer-readable storage
media and/or by one or more hardware elements 1310. The
computing device 1302 may be configured to implement
particular instructions and/or functions corresponding to the
software and/or hardware modules. Accordingly, implemen-
tation of a module that is executable by the computing
device 1302 as software may be achieved at least partially in
hardware, e.g., through use of computer-readable storage
media and/or hardware elements 1310 of the processing
system 1304. The instructions and/or functions may be
executable/operable by one or more articles of manufacture
(for example, one or more computing devices 1302 and/or
processing systems 1304) to implement techniques, mod-
ules, and examples described herein.

As further illustrated in FIG. 13, the example system 1300
enables ubiquitous environments for a seamless user expe-
rience when running applications on a personal computer
(PC), a television device, and/or a mobile device. Services
and applications run substantially similar in all three envi-
ronments for a common user experience when transitioning
from one device to the next while utilizing an application,
playing a video game, watching a video, and so on.

In the example system 1300, multiple devices are inter-
connected through a central computing device. The central
computing device may be local to the multiple devices or
may be located remotely from the multiple devices. In one
embodiment, the central computing device may be a cloud
of one or more server computers that are connected to the
multiple devices through a network, the Internet, or other
data communication link.

In one embodiment, this interconnection architecture
enables functionality to be delivered across multiple devices
to provide a common and seamless experience to a user of
the multiple devices. Each of the multiple devices may have
different physical requirements and capabilities, and the
central computing device uses a platform to enable the
delivery of an experience to the device that is both tailored
to the device and yet common to all devices. In one
embodiment, a class of target devices is created and expe-
riences are tailored to the generic class of devices. A class of
devices may be defined by physical features, types of usage,
or other common characteristics of the devices.

In various implementations, the computing device 1302
may assume a variety of different configurations, such as for
computer 1314, mobile 1316, and television 1318 uses. Each
of these configurations includes devices that may have
generally different constructs and capabilities, and thus the
computing device 1302 may be configured according to one
or more of the different device classes. For instance, the
computing device 1302 may be implemented as the com-
puter 1314 class of a device that includes a personal com-
puter, desktop computer, a multi-screen computer, laptop
computer, netbook, and so on.

The computing device 1302 may also be implemented as
the mobile 1316 class of device that includes mobile
devices, such as a mobile phone, portable music player,
portable gaming device, a tablet computer, a multi-screen
computer, and so on. The computing device 1302 may also
be implemented as the television 1318 class of device that
includes devices having or connected to generally larger
screens in casual viewing environments. These devices
include televisions, set-top boxes, gaming consoles, and so
on.
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The techniques described herein may be supported by
these various configurations of the computing device 1302
and are not limited to the specific examples of the techniques
described herein. This functionality may also be imple-
mented all or in part through use of a distributed system,
such as over a “cloud” 1320 via a platform 1322 as described
below.

The cloud 1320 includes and/or is representative of a
platform 1322 for resources 1324. The platform 1322
abstracts underlying functionality of hardware (e.g., servers)
and software resources of the cloud 1320. The resources
1324 may include applications and/or data that can be
utilized while computer processing is executed on servers
that are remote from the computing device 1302. Resources
1324 can also include services provided over the Internet
and/or through a subscriber network, such as a cellular or
Wi-Fi network.

The platform 1322 may abstract resources and functions
to connect the computing device 1302 with other computing
devices. The platform 1322 may also serve to abstract
scaling of resources to provide a corresponding level of
scale to encountered demand for the resources 1324 that are
implemented via the platform 1322. Accordingly, in an
interconnected device embodiment, implementation of func-
tionality described herein may be distributed throughout the
system 1300. For example, the functionality may be imple-
mented in part on the computing device 1302 as well as via
the platform 1322 that abstracts the functionality of the
cloud 1320.

CONCLUSION

Although the invention has been described in language
specific to structural features and/or methodological acts, it
is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or acts described. Rather, the specific features and
acts are disclosed as example forms of implementing the
claimed invention.

What is claimed is:
1. A method comprising:
generating a global lighting value that describes a global
lighting level for a plurality of optical sensors based on
a plurality of inputs received from the plurality of
optical sensors, the global lighting value determined
based on a comparison of a histogram indicating pixel
intensity in the image to pre-trained histograms, each of
the pre-trained histograms representative of a class
indicative of a respective global lighting value;

generating an illumination map that describes local light-
ing conditions of respective ones of the plurality of
optical sensors based on the plurality of inputs received
from the plurality of optical sensors; and

performing object detection using an image captured

using the plurality of optical sensors along with the
global lighting value and the illumination map.

2. A method as described in claim 1, further comprising
recognizing a gesture as a result of the performing, the
gesture usable to initiate one or more functions of a com-
puting device that is configured to perform the generating of
the global lighting value, the generating of the illumination
map, and the performing of the object detection.

3. A method as described in claim 1, further comprising
calculating the plurality of pre-trained histograms by assign-
ing histograms of a plurality of training images to respective
said classes.
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4. A method as described in claim 3, wherein the respec-
tive said classes are specified by a user.

5. A method as described in claim 3, wherein the respec-
tive said classes are specified automatically and without user
intervention.

6. A method as described in claim 1, wherein the gener-
ating of the illumination map includes selecting portion of
values obtained from neighboring ones of a subset of the
optical sensors and collecting intensity values for the sen-
SOIS.

7. A method as described in claim 6, wherein the portion
is defined using a Bresenham circle.

8. A method as described in claim 6, wherein the gener-
ating of the illumination map includes measuring an arc-
length using the portions such that each of the values of the
optical sensors on the arc are brighter than a value of an
optical sensor at a center of the portion.

9. A method as described in claim 1, wherein the gener-
ating of the illumination map includes use of a blur kernel.

10. A method as described in claim 1, wherein the
plurality of optical sensors are configured in accordance
with a sensor-in-pixel configuration of a display device of a
computing device.

11. A system comprising:

a plurality of optical sensors; and

modules implemented at least partially in hardware, the
one or more modules configured to implement:

a global lighting module configured to generate a global
lighting value that describes a global lighting level for
the plurality of optical sensors based on a plurality of
inputs received from the plurality of optical sensors, the
global lighting value generated by comparing a histo-
gram indicating intensity of pixels in the image to a
plurality of pre-trained histograms of intensity corre-
sponding to different global lighting values;

a local lighting module configured to generate an illumi-
nation map that describes local lighting conditions of
respective ones of the plurality of optical sensors based
on the plurality of inputs received from the plurality of
optical sensors; and

an object detection module configured to perform object
detection using an image captured using the plurality of
optical sensors along with the global lighting value and
the illumination map.

12. A system as described in claim 11, further comprising

a gesture module configured to recognize a gesture as a
result of the performance of the object detection.

13. A system as described in claim 11, wherein the local
lighting module is configured to generate the illumination
map at least in part by selecting a portion of values obtained
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from neighboring ones of a subset of the optical sensors and
collecting intensity values for the sensors.

14. A system as described in claim 13, wherein the
generating of the illumination map includes measuring an
arc-length using the portions such that each of the values of
the optical sensors on the arc are brighter than a value of an
optical sensor at a center of the portion.

15. A system as described in claim 11, wherein the
generating of the illumination map includes use of a blur
kernel.

16. A computing device comprising;

a processing system; and

one or more computer readable storage media comprising

instructions that, when executed by the processing

system, cause the computing device to perform opera-

tions for object detection including:

generating a global lighting value that describes a
global lighting level for a plurality of optical sensors
based on a plurality of inputs received from the
plurality of optical sensors, the global lighting value
determined based on a comparison of a histogram
indicating pixel intensity in the image to pre-trained
histograms of intensity corresponding to different
global lighting values;

generating an illumination map that describes local
lighting conditions of respective ones of the plurality
of optical sensors based on the plurality of inputs
received from the plurality of optical sensors; and

performing object detection using an image captured
using the plurality of optical sensors along with the
global lighting value and the illumination map.

17. A computing device as described in claim 16, wherein
the instructions, when executed by the processing system,
further cause the computing device to perform operations
including: recognizing a gesture as a result of the perform-
ing, the gesture usable to initiate one or more functions of
the computing device.

18. A computing device as described in claim 16, wherein
the generating of the illumination map includes selecting
portion of values obtained from neighboring ones of a subset
of the optical sensors and collecting intensity values for the
sensors.

19. A computing device as described in claim 18, wherein
the portion is defined using a Bresenham circle.

20. A computing device as described in claim 18, wherein
the generating of the illumination map includes measuring
an arc-length using the portions such that each of the values
of the optical sensors on the arc are brighter than a value of
an optical sensor at a center of the portion.
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